Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(6): e1010658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759511

RESUMO

Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.


Assuntos
Infecções por Henipavirus , Estomatite Vesicular , Vacinas Virais , Animais , Modelos Animais de Doenças , Vacinas contra Ebola , Glicoproteínas/genética , Doença pelo Vírus Ebola/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Humanos , Camundongos , Vírus Nipah/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Sintéticas/efeitos adversos , Estomatite Vesicular/prevenção & controle , Vacinas Virais/efeitos adversos
2.
Regul Toxicol Pharmacol ; 116: 104729, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652207

RESUMO

Exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water (≥250 ppm) is reported to decrease ovarian follicle counts and increase follicular atresia in mice. To assess effects at lower concentrations, herein we exposed B6C3F1 mice to 0.1-150 ppm Cr(VI) in drinking water for 90 days in a GLP-compliant study. Ovarian follicular counts, differentiation, and degeneration were assessed from every 10th serial section (up to 14 sections per ovary). Ovarian follicular counts, differentiation, and rate of atresia were not altered in any exposure group. Gross and microscopic changes were not apparent in any of the evaluated reproductive or glandular organs. The no observable adverse effect level (NOAEL) for follicular effects was 150 ppm. In addition to these findings, published Cr(VI) studies examining follicles were scored using two methods for assessing study quality for use in risk assessment-including the Toxic Substance Control Act (TSCA) scoring method. Both methods revealed that studies reporting adverse effects on follicles generally received low scores. Overall, the current study indicates no/low potential for Cr(VI) to induce follicular toxicity in mice below 150 ppm Cr(VI) in drinking water (17.7 mg/kg bodyweight).


Assuntos
Cromo/toxicidade , Ovário/efeitos dos fármacos , Administração Oral , Animais , Colo do Útero/anatomia & histologia , Colo do Útero/efeitos dos fármacos , Água Potável , Feminino , Camundongos , Nível de Efeito Adverso não Observado , Ovário/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA